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Abstract

Tolerance is inevitable because manufacturing exactly
equal parts is known to be impossible. Furthermore, the
specification of tolerances S an integral part of product
design since tolerances directly affect the assemblab ility,
Junctionality, manufacturability, and cost effectiveness of
a product. In this paper, we present statistical tolerance
and clearance analysis for the assembly. Tolerances work
against the assemblability of a product since they can
propagate and accumu late in the product, making it more
difficult or impossible t0 assemble. Clearances, however,
work for the assemblability since they can be used to com-
pensate for tolerances. The poses of parts in an assembly
may be adjusted within the permitted clearances to assem-
ble the parts. Monte-Carlo method is used in the analysis,
with Gaussian distribution, Gaussian-Sigmoid distribu-
tion, and Chi-Square error reduction scheme 10 approxi -
mate tolerances and clearances. Then, algorithms to
compute the propagation of tolerances and clearances
are proposed. Our proposed work is expected to make the
Jollowing contributions: (i) to help the designers t0 evalu -
ate products for assemblabi lity, (ii) to provide a new per-
spective 10 tolerance problems, and (iii) t0 provide a
tolerance analysis tool which can be incorporated into a
CA D or solid modeling system.

1: Introduction

The specification of tolerances is an integral part of a
product designsince tolerances directly affect the assemn-
blability, functionality, and manufacturability of a product,
Morcover, tolerance is inevitable because manufacturing
exactly equa parts is known to beimpossible [ 17.

Although they arc smal as compared with part
dimensions, tolerances canpropagate and accumulate in
an assembly affecti ng the product assemblabilit y. 1 ‘or
example, an assembly with six nominal parts is shown in
Fig. 1 (4). It may fail to assemble if some manufactured
par s deviate {1 oin their nominal shape. Yig. 1 (b) shows
thattwo pegs of 1'1 deviate from their nominal pose: one.
has asmall rotation deviation and the other one has a small
translation deviation. The assembly fails to assemble
because these deviations propagate in tbc assembly, and
make SmnC parts to intersect, ¢.g., P2 inter SeCts with 14
and 1'6, and P4intersects with PS anti P6.
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Figure 1: An assembly with six parts.

Clearances can be used tO compensate for tolerances.
Clearance isa free, adjustable space between two mating
features, which arc surfaces of parts that play a functional
role in an assembly. This free may be used for adjusting
the part poses.For example, Fig. 1 (c) shows that an
assembly is destgned with clearances. This assembly may
bc. assembled with toleranced P1because the clearances
can be used to adjust the poses of parts in the asscimbly to
compensate the deviations caused by the tolerances, as
shown in ¥ig. 1 (d). Note that Plin Fig. 1 (b) is just onc
feasible instance of shapc deviations of }' 1. For example, a
peg feature of 1’1 is alowed to have any deviation within
the tolerance specification, as shown in Fig. 2. Fig. 2(a)
shows that the feature has position tolerance. The meaning
of the position tolerance is that the axis of the feature is
alowed to be anywhere within the toler ancc zone, as
shownin Fig. 2(b). (Refer to [2,3] for more details of tol-
erance specifications.)

The goal of this work is to study the effect of toler-
ances anti clearances on the assemblability of a product.
That is, what is the asscinblability, or the probability of
successful assembly, of a product under the given toler-
ances and clearances? The asscmblability of a product is
animportant issue in design because it is directly related
to the cost and prod uctivity.

in this work, tolerance is represented by an ellipsoid,
with Gaussian distribution, and clearance iSrepresented by
a nominal ellipsoid and a range. The nominal ellipsoid
represents an - approximation  of nominal clearance.
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Figure 2: Position tolerance of a peg in 2-D.

Whereas the range repr esents the permitted statistical vari-
ability of the nom inal clcarance. Monte-carlo method is
used to simulate the. tolerances of mating features. g’ hen,
Gaussian distribution and Chi-Square error reduction
scheme are used to approximate. the tolerances; and Gaus-
sian-Sigmoid distribution and (Ihi-Square error reduction
scheme are used to approximate the clearances. For the
analysis, following assumptions arc made: Parts arc
assumed 10 be rigid and do not de form during asseinbly;
clearance between mating  features are zero or larger;
exactly two mating features arc used in mating; and the
assembly is assumed to have no intersection betwe:n
nominal parts in an assembly.

2: Related works

Whitney and Gilbert [4] represented tolerance by a trans-
form matrix in kinematic paramcters to be used as input to
atolerance analysis tool. By using the Chi-Squ are error
reduction scheme, they minimized the probability crror
between the analytic solution of a Gaussian probability
density function and the simulated solution from Monte-
Carlo simulation. A possible representation for clearance
between two mating features was proposcd briefly in
terms o f conditional variance. However, neither the repre-
sentation NOr the computation for clearance was provided.
In particular, clearance was described in the context of tol-
erance propagation treating it as tolerance (uncertainty.)
Foster [2] anti ANSI Y14.5M[3] describe geometric
dimensioning anti tolerancing for designing ami manufac-
turing components Of a mechanical products. Requicha
[5,6]p1 oposed atolerance zone representation in an effort
to integrate it with solid modelers. This representation
uses tolerance zonesto check whether the appropriate por-
tions of the part boundary lie within the zones.

Bjorke (1] proposed one dimensio nal statistical toler-
ancc analysis based on the function ality of a product. His
objective was to derive the tolerance chain cquation for a
st dimension, an important dimension in a product.
Then, the sum dimension was checked whether or not it
met the functionality criteria, €.g., a clearance between
two surfaces mustbe larger than zcro andless than some
limit. Treacy and et a. [7], Wang anti Ozsoy [8], and
Soderberg [9] implemented a data structure, an algorithm

Figure 3: Feature graph of six part assembly.

for generating the tolerance chain, and a computer inter -
facc of Bjorke’s approach.

Su and L.ec [10] modeled tolerances using differential
transforins and characteri zed them using means and cova-
riances. They proposed an analytical method for tolerance
propagations. However, the method did not consider clear-
ance, and the approach was based on the pose uncertainty
of an objectduring an assembly task. Shatonanti etai. [ 11]
computed the. expected worst-case location of afeature in
an assembly using transformation matr ix multiplications.
Grossman [ 12] used Monte Carlo miethod to simulate
manufacturing processes, where four holes arc drilled into
a rectangular box. ~'hen, an assembly process was sitiu-
lated where alid with four holes was atlached to a box
with four holes, so that the four screws could be inseried.
The number of successful assemblies was dctermined
based on whether all screw holes were aligned within pre-
defined limits.

3: Representation

This section describes in detail tolerance and clearance
representations and computations involved in approximat-
ing the tolerances and clearances. An assembly model is
also de scribed briefly.

3.1: Assembly modeling by a feature graph

An assemnbly iS wodeled by a feature graph (FG.) ¥G
describes both the loca relations between a part and its
mating features, and the global mating relations between
tile parts in an assembly. In an asscmbly, paits are mated
through mating features. A mating feature is a feature (or
surface) of a part that plays a functionalrole such as mat-
ing, FGis similar to mating graph [13], but }G includes
tolerance anti clearance attributes.

FG is defined by asct of nodes arid a set of edges:
FG= (N,E). There are three types of nodes: F-node, M-
node, anti P-node. F-node represents amalting feature, anti
has an associated tolerance ellipsoid. M-node represents a
pait of mating features, and has an associated clearance
ellipsoid. Note that two 1~-nodes represent onC M-node. -
node represents a local coordinate frame of a part (e.g.,
datum reference frame.) An edge represents the relation
between P-node and |;-node, and has the associated trans-
formation matrix, In the pictures, F-node is denoted by a
white Or gray circle, M-node is denoted by a gray circle
inside awhite circle, and ]-node is denoted by ablack cir-
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Figure 4: Pose tolerance and tolerance ellipsoid.

cle. For example, FG of six part assembly in Fig. 1 is
shownin Vig. 3.

3.2:Tolerance representation

ANSI Y14.5M[2,3] defines various types of gcometric
tolerances, e.g., form, location, orientation, profile, and
runout, to represent tolerance of a feature. ‘1’ here arc two
types of features: related and individual. Tolerances of
most related features can be represented by elipsoids [4].
Related features arc features which relate to a datum, or
datuns, in location, orientation, runout, and profile. The
tolerance of arelated mating feature affects the pose of the
feature, and is called pose tolerance. Where as, individual
features arc features which relate to perfect geometric
counterparts of themselves as the desired forins, and no
datum is used. The tolerance of an individual mating fea-
ture affects clearance, and is called dimension tolerance.

The pose tolerance (or tolerance) of afeature is repre-
sented by an cllipsoid with its center located at the origin
of the nominal coordinate frame of the feature. Although
there exist other types of distributions for manufacturing
processes, ¢.g, rectangular, beta, etc., Gaussian distribu-
tion isassumed for pose and dimension tolerances because
the specific manufacturing processes are ot known at a
design stage, many manufacturing processes have Gauss-
ian distribution [9], and central limit thcorem {9,14] can be
applied to tolerance propagation.

The ellipsoid is an approximation of real tolerance
deseribed in kinematic parameters. Yor example, the peg
feature shown in Vig. 4(a) has position tolerance of 0.02 in
diameter. The meaning of the position tolerance [2,3] is
that the axis of the peg isallowed to reside. in the tolerance
zone de.fined by a rectangular box as shown in Fig. 4(c),
This implies that the coordinate frame attached to the axis
of the peg, as shown in Fig. 4(b), can translate maximum
of 40.01in x-axis and rotate maximum of 40.014 about z-
axis (the axis orthogonal to the paper), as strewn in lig.
4(d). This areais called tolerance volume, and shows that
X and @ parameters arc dependent. Finally, this tolerance
volume is represented by an ellipse that optimally approx-

Figure 5: Simulated and analytic solutions,

imates the distribution of the tolerance volume, as shown
in Yig. 4(e). The optiniization factor, 0= 0.95, is obtained
from a simulation resultusing 5000 randomly and nor-
mally generated samples using the process described
below. The simulated solution and the analytic solution arc
shown in Yigs. 5(a) and (b), respectively.

The computation process of a tolerance ellipsoid is as
follows: Wc assume that the tolerance has Gaussian distri-
bution, and simulate the tolerance using Monte-carlo
Method [1 S]. First, randomly and normally generate a
point (x;) On the x-axis within the maximum boundary
(f ©.Q]). ‘1'hen, randomly and normally generate a point
(O) onthe 0-axis within the limit at xi. The random sanple
(x;,0;) is considered as an instance of one Monte-Carlo
simulation. Repeat the random gene.[atic]~INtil[]cs. Thisis
asimulated distribution of the. pose tolerance. Gaussian
density function with ¢, where ¢ is the standard deviation
and equals to one-third of maximum boundary limits, is
used to initially approximate the simulated density (e.g.,
o,:0.01/3.) The probability within the 1 3o boundary of 2-
13 Gaussian distribution is 0.989[16]. This initial o isopti-
mized using Chi-Square error reduction scheme. In this
scheme, the simulated area (total density is equal to one)
and Gaussian density area (using 230 limits) arc parti -
tioned into square grids. “1'hen, for al grids,sumthe
squares of the. difference between two probabilities of the
grid centers. Oli-Square. error reduction scheme iteratively
multiplics 6's by an optimization factor, ¢, until the mini -
mum Chi -Square S found for some o. The optimized
ellipsoid has the axislengths of o+30.

3.3: Clearance representation

Clearance a free, adjustable space between two mating
features. This space provides adjustability to part poses in
an assembly. When nominal dimiensions Of mating fea-
tures are used, the corresponding clearance is nominal.
However, diniension tolerances of mating features can cre-
ate vatiability to the nominal clearance. The clearance
between two mating features is represented by a nominal
ellipsoid and a range with Gaussian disttibution. Note that
a functionality requireinent may be associated with clear-
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Figure 6: Clearance between peg and hole.

ances. Therefore, clearance must accommodate function-
ality requircinent,

A free space between two mating features iS repre-
sented by a clearance zone. For example, the clearance
zone of the peg and hole mating features of Pland '3 in
Fig. 6(a) is shown in Fig. 6(b). The axis of the clearance
zone denotes the same axis of the peg. The nomina clear -
ance zone is 0.4 by 1.0, which is the difference between
the nominal diameters of the hole and peg, and the depth
of the hole. Since the diameters of hole and peg have
dimension tolerances of x0.05, the clearance zone in x-
axis have 40.1 of variability. Vhis range is assumed to
have Gaussian distribution, as shown in Fig. 6(b). From
this clearance zonc and the range, clearance volumes can
be generated, as shown in Yig. 6(c). This distribution is
used for computing the. nominal clearance elipsoid and
the range.

The following algorithm Computes the clearance
ellipsoid and the range of peg and hole mating features:

Ak&nﬂxm&cammﬂhmnﬂ (Peg-Hole)

. Randomly and nonmnally generate diameters, I, and
Dy, Of the peg and hole,, respectively. D is gcncralcd
by adding the nomina peg diameter and the randomly
and normally generated value, Ty, from the peg’s
dimension tolerance. T), is generated using o, as the
standard deviations of peg, where 43*c,, is equal to the
peg’s dimension tolerance. I3y, can be generated in a
similar way. “I"he clearance zone isarectangular area
with the width, W, equals to Dy, - B, and the height, H,
cquals to the depth of the hole.

2. Calculate the clearance volume from the clearance
rone. When the axis orientation is zero, the limitin x-
axisisequal to 4 W/2. When the transla tion of the axis
iszero, the. limit in rotation, O, is W/l Jusing the small
angle approximation. The clearance volume has a dia-
mond shape, which shows the dependency between x
and O paramcters.

3. Generate N clearance volumes from steps 1 and 2.

4. Generate M uniformly distributed samples, S, inside a
squat ¢ arca which can cover the largest cleatance vol -
ume.

1. For cach clecarance volume Vi, for i= 1N, collect S¢
S. which intersect V;. This collection Of S;’s form s a
flat-top shape distribution. The flat-top area corre-
sponds to the minimum clearance volume. (See Yig.

6(c).)
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Figure 7: Clearance distributions.

6. Using Gaussian-Sigmoid filter method, calculate the
nomina clearance ellipsoid and its range. This step is
discussed in next section in detail.

4. Clearance computation

"This section shows the dctails of the computation process
for calculating the nomina clearance ellipsoid and the
range from asimulated solution of clearance.

4.1: Gaussian-Sigmoid filter

A simulated solution is approximated by an analytic solu-
tion, Gaussian-Sigmoid distribution. The siinulated solu-
tion of clearance has aflat-top bell shape, as shown in Fig.
7 by a dotted line; and an analytic solution will approxi-
mate the shape, as shown in the figure. Sigmoid function is
shown in equation (1).

1 1
S = 2[~ ¥/ 3,] nH
1+€

When, Y= G(X), where G(X) is a Gaussian probability den-
sity function (2),

N L
- —_ (7 H
2y 2172
the equation (1) becomes Gaussian-Sigmoid density func-
tion. This analytic solution has a shape similar to a cleat -
ancc distri bution. Two parameters, ¥, and T, in Gauss ian -
Sigmoid function control the shape. Therefore, optimal
values of these paramecters should provide an optimal
approximation of asimulated solution by an analytic solu-
tion.

The covariance matrix, X, of a simulated solution is
computed using equation (3),

G(X) =

Mo,
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where M is the number of clearance samples and pr; is the
iy, sample. We. assume that the mcan is atthe origin of a
coordinate frame. Note that 2 may not be a diagonal
miatrix, meaning that the matrix has rotational compo-
nents, However, we can aways compute the eigen values,
A, and orthogonal cigen vectors, V, which con espond to
the diagonal matrix and the rotation matiix of 2, respec-



tively, or £ =VAV" [1 7]. Note that throughout this paper,
wc will assume that 2. is a diagonal matrix, unless stated
otherwise.. This X isused as an initial covatiance matrix in
Gaussian-Sigmoid function (1).

The flat-top surface can be controlled by adjusting
paramcter ‘1" in Sigmoid-Gaussian function. ‘1" controls the.
slope of the Sigmoid curve, which, in turn, controls the
arca of the flat-top surface of Gaussian-Sigimoid distribu-
tion. Optimal T provides an analytic fiat-top surface. that
best fits an simulated flat-top surface. ‘1'hen, ¥ is optimized
to best fit the bell shape curve of a simulated solution.

4.2: optimization proms

Gradient-based method is used to optimize parameter T
and to find the optimizing factor, ¢, for X, so that an ana-
Iytic solution can best approximate a simulated solution.
The Chi-Square (X®) error equation used in this problem is
the sum of the square errors between the analytic and sim-
ulated densitics, as shown in equation (4).

m

I IECHRCD) BT

in this equation, S(X ) isthe analytical density at X;; and
P(X; )|sthc simulated density at Xl ., where X.J |s the
glld(l,J) Sand P arc. normalized such that the total density
equals one.

The normalization may produce, some grid densities
of a simulated solution larger than one. This is due to tbc
random generation of samples. ‘1’0 take this case into
account, the optimiz ationof a flat-top sul.face begins oy
adding the arcas of the grids that have the density close to
I(c. g., 0.95) or larger. This sum, A, is an approxii nation
of the arca of a simulated flat-top sLu-face. From this, an
initial ‘1" value can be computed for the Gaussian-Sigmoid
functi on.

For aninitia 1 value, the. minimum ellipsoid, E

n\ln'

calculated from Ay and the ratio, P‘017°z7- The ratio
cornes fron the ratio of covariances of clearance samples.
This ¥,;, has the area equal to Ay,. The axis lengths of I
arc a and bofa,,

‘min

= nab, where a= pb  and

b= JA”/ (np) . Then, I can be computed with X=(a,0),
or X=(0,b), as shown in cquation (5).

. . 'l‘ 5
" Tog [(2/(0.9985 - 1)) -1] , where (5)
1,7
| ~§X v X

K = - 2
an II/QIXII/Q

However, this'T' gives an approximation of the area ofa
simulated flat-top surface, and T can be optimized to better
approximate the arca with respect to the density of the flat-
top arca. That is, the density in the flat-top area of a simu-
lated solution is not flat, Therefore, this actual density
must be approximated by adj usting the *1'value.

Optimal ‘1’ should have minimal error between the.
densities of simulate.d and analytic solutions, only in the

area of the flat-top surface of a simmulated solution. Chi-
Square crmr eguation can be formulated such that the den-
sitics outside the flat-top area arc zero for both solutions.
Gradient 81 of 1 can be formulated as shown in equation
(6).

n m

o7 = .a s-0 Y L {2(( ) I'(Xl.'ng‘;} (6)

i=1j
At each iteration of the Chi-Square error reduction
scheme, 871 is added to T, until T converges (or X2 reaches
its predefined limit set by auser.) ThisT, is an optimal I
for given.

Next, 2 isoptimized to best fit the density between thc
flat-top surface anti the. boundary of a simulated solution
by an analytic solution. When optimizing X, 15, must also
change accordingly to preserve an optimal flat-top area.
Gradient 8¢ for the optimization factor ¢ of X iscomputed.
8¢ can be fonnulatcd asin equation (7).

, 98, .
()l o
During C.hl-Squarc error reduction iterations, §c¢ is added
to ¢.'J hen, 3 ismultiplicd by ¢. The density inside the flat-
top arca is kept zero since optimization process is per-
formed outside this area,

| mally, the. clearance ellipsoid and the range can be
computed from the minimum and maximum  ellipsoids
derived from equation (1) by letting S(Y)= 7, where Z
equal to 0.9985 and 0.0015, respectively. These 7. value.s
are selected as they closely conespond to + 3¢ probability y
of Gaussian distribution [ 16]. The ellipsoid equation
derived from equation (1) is shown in equation (8)

= X'X1X , where (8)

2 »Y’ZI,nK 71!1(]143))( @n ),l/yl !]/2)]

The nominal clearance ellipsoid is the average ellipsoid of
the two ellipsoids, i.e., axis lengths of the nominalellip-
soid arc the aver-:iigc lengths of the two cllipsoids. The
range is the diffc.rent.c between the axis lengths of the
nominal anti the minimum ellipsoid (or maximumn ellip-
soid.)

The following example shows the computation pro-
cess and results of a simulation for the clearance ellipsoid
and the range between two mating features, PCg and hole,
of Pl anti P3 shown in Yig. 6(a). Wc pei formed Monte-
Carlo simulation on the diameter dimensions of the peg
and the hoic with N=50. This results in 50 possible clear-
ance zones and volu mes. Sz 2500 random and uni form
samiples were gencrated within the maximum boundary,
Then, al samples S; ¢ S that intersect with clearance vol-
uvines are collected, for all N clearance volumes. The cor-
responding nor malized density mesh of the simulated
clearance is shown in Fig. 8(). The clearance area was
partitioned into square grids with longer side of the area
pattitioned into 20 grids.

A flat-top surface areais computed by adding the area
of grids which density is 0.95 or larger, This density mesh
figurc isshown Fig. 8(b). The flat-top surface area is con-
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Figure 8: Simulation results of clearance.

puted to be equal to 0.0873. This value iS an approxima-
lion of the rea minimum clearance of dian]ond-shape
clearance volume, which is 0.0692. Using this area and
covariance matrix, 2, of the simulated samples, an initial T
parameler value is calculated, 1= 0.6320. However, after
the optimization process, We. obtained 1= 0.5855. The cor-
responding analytical Gaussian-Sigmoid distribution,
without optimization on X, is shown in Fig. 8(c). Finally,
optimization is performed on X, and the corresponding
Gaussian-Sigmoid distribution is shown in Fig, 8(d). From
these optimiized 1" and %, the axis lengths of [0.1 171,
0.2374] anti [0.2254, 0.4773] (where [x, 0]) are. calculated
for the minimum and maximuia ellipsoids, respectively.
The nominal ellipsoid is calculated to have the axis
lengths of [0.1 762, 0.3 S73], with the range of [0.0592,
0.1199].

5: Propagations

Tolerance pr opagationrefers to the effect of tolerance of a
mating feature on other mating features in the asseibly.
Similarly, clearance propagation refers to the effect of
clearance between two mating features on other features.
Inthis section, we describe approaches to computing the
propagations of tolerances and clearances.

5.1: Serial chain

A seria chain (S-chain) is a path without repeated nodes
inagaph (feature graph.) In S-chain, tolerances and
clearances propagate from a node to the next node in the
chain; and they can bc calculated independently. The prop-
agation of tolerances in S-chain consists of adding the tol -
erances Of anode and its next node. Note that the rotation
components Of tolerance of a node may create translation
components on the next node. This effect must be added.
T'he operation to acid two tolerance ellipsoidsis called
a sweep operation, or a Minkowskiaddition [18]. A sweep
operation is defined as an addition of all possible combina-
tions of position vectors of two tolerance samples. The
resulting distribution IS approximated by Gaussian distti-
bution using the covartance matrix (3) obtained from the
added distiibution. “1"hen, Chi-Square error reduction
scheme is used to optimized the Gaussian distribution.
Now, the method of sweep operation for clearance
ellipsoids is 1o generate a clearance distribution, e.g, flat-
top bell shaped. Fig. 9. illustrates this method. First, a
boundary B is generated from the swept arca of two maxi-
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Figure 9: Clearance sweep operation.

mum clearance ellipsoids, as shown in Vig. 9(a). “1"hen,
uniform samples arc generated inside B, as shown in Fig.
9(b). A randomly generated ellipsoid, fromn the first clear-
ance ellipsoid and tbc range, is placed at the origin, and a
randomly gencrated ellipsoid, from the second clearance
cllipsoid and the range, is placed on every sample, as
shown in Fig. 9(c), Finally, those samples which make
those two random ellipsoids to inter sect are collected, as
shown by dark dots in Fig. 9(d). This process is repeated
many times, then the distribution of the collected samples
i s approximated by Gaussian-Sigmoid filter method
described in section 3.3,

Example 1;
The tolerance and clearance at upper hole of P4 ac com-
puted for asubassembly consisting of parts, P1,P3, and P4
of Fig. 1. in this simulation, clearance was computed twice
for two different diameters and dimension tolerances of
peg and hole: 1.4010,05 and 1.804 0.05, and 1.6340.001
and 1.674 0.001. Note that all mating features have the
same position tolerances as shown in ¥ig. 4(a). The simu-
lation results are reported. The tolerance ellipsoid is
([0.123, 0.028] ,[00‘95» Of-ﬂ ),
0.300 095

for (axis lengths, rotation matrix). The clearance ellipsoids
ate

([ 1.523, 1.124],[@%09‘91;} [0.300, 0.221]) and

([0.1 =4, 0.092],[‘094‘0-33}, [0.066, 0.039)]),
0.33 0.9

for (axis lengths, rotation matr iX, 1anges) for large and
small clearances respectively. The results show that the
first simulation has much larger clearance than tolerance,
as it should bc, since clearances were n wchlarg er than tol-
cirances. However, the second simulation has nomitnal
clearance that is closer to tolerance. No[c. that the toler-
ancescome fiom every mating feature in the chain,
whereas the clearances comce from every pair of mating
features.
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Figure 10: Intersection operation.
5.2: Parallel chain

A parallicl chain (P’-chain) isa minima] loop, i.e. no subset
of its nodes can form aloop, in a feature g1 aph. Tocom-
pute the propagation of tolerances and clearances of a P-
chain, we hypothetically cut the P-chain at M-node, and
form two S-chains, SC1 and S(’'2. Here, the clearance of
M-node must be added to the S-chain which has the
selected 1~-node for the propagation. From the results of
$C1and SC2, a solution for P-chain can be calculated
using the intersection operation, which will be explained
next.

The method is described using Fig. 10. | et’s assume
t that T'land T2 arc the tolerances of SC 1 and SC2, respece-
tively, as shown in Fig. 10(8). With normal distribution,
randomly generate one sample fiom T1andone from 712,
where the centers of T1and 12 arc located at the origin of
a coordinate frame.These samples, pl and p2, denote
instances of tolerance accumulation of SCI and SC2,
respectively. Next, randomly generate clearances, C 1 and
C2, from clearances and ranges of SCland SC2.C1 and
(2 denote instances of clearance accumulation of SC 1 and
SC2, respectively. Locate centers of C 1 and €2 on p] and
p?, respectively, as shown in Fig. 10(b). I"hen, the inter-
section of C1and C2iscomputed. This intersection arca
and the center point, ¢ and ¢ respectively, arc the clearance
and the toletance of one instant.c of al’-cbain. By repeat-
ing the above process many times, a distribution of ?'s, as
well as C'S, can bc formed. These distributions arc approx -
imated using methods described in sections 3.2 and 3.3.
Note that the location of f remain the same, but the center

of ¢ mustbe located a the origin of a coordinate. frame as
shown in Figs. 10(C) and (d).

The asscinblability of a P-chain can be computed by
dividing the. number of successful trials by the total num-
ber of trials. An asscinbly is assutned successful if C1and

C2intersect, Or ¢ isnot empty.

Example 2;
A subassembly, composed of Pl, 1'2, and P3,forms aP-
chain. Two S-chains, SC1 and SC2, arc formed by hypo-
thetically cutting the P-chain between P2 and P3.

Two simulation results are shown using two different

-02

-03
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Figure 11: Tolerance and clearance of P-chain.

diameters for pegs and holes asin example 1. With larger
clearances, the tolerance cllipsoid is

(0,078, 0.121], ko 0]26 ),
and the clearance ellipsoid is
(10203, 0.320],[07/07}, [0.095,0.150)).
~0.70072)

This result is plotted in Fig 11, where *., X', and *** arc
plots of maximum, nominal, and minimum clearances,
respectively,and ‘-t isaplot for the. tolerance. ‘t' he assem-
blability is equal to 1. With smaller clearances, the toler-
ance elipsoid is

([0.014, o.ozs]F§ .

and the clearance ellipsoid is
([0.013, 0.024],[07?06’767} [0,007, 0.0]2]),
- 0870073
The assemblability is equal to 0.946.

S.3: Multi chain

A multi chain (M-chain) is composed of two or more P-
chains. To compute the propagation of a M-chain, wc pro-
pose a systematic approach. That is, give.n a base node, B-
node, and a goa node, (i-node, M-chain can be solved
recursively in terms of S-chains and -chains.

The method is illustrated using Yig. 12. The M-chain
consists of two P-chains, ChPland ChP2, asshown in Fig,
I2(a). First, }' 4 isselected as a~T-node. “1'her), ChPliscut
at I3, which is attached to G-node, to form two S-chains,
ChS 1 and ChS2, as shown in Fig.12(b). ChP1cannot he
solved until ChP2 is solved. That is, tolerances and clcar-
ances at 2 and P3 must be computed from ChP2. Since
ChP2 isjust a P-chain, the solutions can bc comnputed cas-
ily. Note. that, a M-chain may gill be a M-chain with one
less P-chain aftet cutting one P-chain, the above step can
be recursively applicd to a ncw M-chain. The result of
ChP2 is propagated to }"3] though ChS1fiom 1'3. Suni-
larly, the solution propagates to }"3? fromP2. 1.astly, the
intersection operation is applied to the results of ChS 1 and

ChS82.
The time complexity of M-chain algorithm in the

worst case is 0(2'"), where n is the is the number of P-
chains ina M-chain. In the worst case, M-chain isacom-
plete graphand n is O(n®), where m is the nummber of parts



P4= G-node
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